# No.354 (PAP)

 No.354Petko A. Petkov (Bulgaria) Original Problems, Julia’s Fairies – 2013 (II): May – August  →Previous ; →Next ; →List 2013(II) Please send your original fairy problems to: julia@juliasfairies.com

No.354 – Petko A. Petkov – Wonderful Disparate problem! Enjoy author’s detailed comments to all 3 solutions! I’m so grateful for the dedication! (JV)

Definitions:

Camel – (1,3) Leaper

Zebre – (2,3) Leaper

Disparate: If one side makes a move with a piece of type “x” (black, white, neutral, half-neutral, etc., King included), the other side cannot answer immediately by moving a piece of the same type “x”. (For example: white Qc1, black Ka8,Qa7 – mate in 1 move. After 1.Qc8#, Black is mated because 1…Qb8? is illegal. The mate is possible also with the neutral nQc1 – after 1.nQc8#. Black cannot move the same neutral Queen.) Every Pawn’s promotion is a Pawn’s move, therefore after such promotion (into any possible piece) the other side cannot answer immediately with its Pawn. We can say that after the move of the figure of type “x” any enemy figure of type “x” falls under Half-moving paralysis. This paralysis disappears immediately on the next half-move, if the opponent plays with another piece of type “y”.
This is the main version of Disparate (the programmer is Stephen Emmerson), that is presented only in Popeye (starting 4,53 version), and answers to the definition of the inventor Romeo Bedoni (2004) and to the requirements about this condition of the editors of “Phenix”. Using Popeye‘s version of Disparate in 2010 was organized a big international tournament Bedoni – 80 Jubilee, with results published in the magazine “Phenix” – No.191-192/2010. In the same number was also published a big article by Petko A.Petkov about Disparate, dedicated to its inventor Romeo Bedoni.  Important noteDisparate condition is not included in Popeye‘s manual, but it is implemented there and can be used as “Disparate“.
Another version of Disparate you can find in WinChloe, but it is based on the different rules.

 No.354 Petko A. Petkov Bulgaria original-02.08.2013 Dedicated to Julia Vysotska!                                  hs=3                                   (1+7+7)      (С+ Popeye 4.63)b) Pb4→b6c) Pe3→c6DISPARATE Camels: c1, g7 Zebras: f1, f8     Solutions: (click to show/hide)   a) 1.nQxg7 (A) nBc3! 2.nQxf6 (B) nZxc3!! 3.nQa6 +!! nZxa6 =!! –AB white moves, nZx nB captures by black afer nBe1 sacrifice on c3 ! In the final position: nZf8 and nZa6 are paralysed for White, nCAc1 is pinned! Pay attention that after 3.nQa6+! the nQ is paralyzed for black, but paralyzed is also Qb2 and the defenses 3…Qa2?? or 3…Qa3?? are illegal! A lot of thematical tries and dual-avoidance motives with Disparate motivation are possible here: At first: 1.nBc3? – if here 1….nZxc3? 2.nQxg7? the nQ is paralyzed for Black and it is impossible 2…nQxf6?? After 1…nQxg7? White cannot play 2.nQxf6?? but after 2.nZxc3? nQxf6?? the nQ is paralyzed for White and the move 3.nQa6+? is impossible! The anti-dual effect is also demonstrated after 1.nQxg7 and here black cannot play 1…nQxf6? because the nQ is paralyzed for Black! b) 1.nQxf6 (B) nZd4! 2.nQxf8 (C) nCAxd4!! 3.nQa3 +!! nCAxa3 =!! – BC white moves, nCAx nZ captures by black afer nZf1 sacrifice on d4! In the final position: nCAg7 and nCAa3 are paralyzed for White, nBe1 is pinned! Thematical tries and dual-avoidance motives with Disparate motivation are: At first: 1.nZd4? – if here 1….nCAxd4? 2.nQxf6? the nQ is paralized for Black and it is impossible 2…nQxf8??. After 1…nQxf6? White cannot play 2.nQxf8?? but after 2.nCAxd4? nQxf8?? the nQ is paralyzed for White and the move 3.nQa3+? is impossible! The anti-dual effect is also demonstrated after 1.nQxf6 and here black cannot play 1…nQxf8? because the nQ is paralyzed for Black! c) 1.nQxf8 (C) nCAf2! 2.nQxg7 (A) nBxf2!! 3.nQa7+!! nBxa7 =!! – CA white moves, nBxnCA captures by black after nCAc1 sacrifice on f2! In the final position: nBa7 and nBf6 are paralyzed for White, nZf1 is pinned! Thematical tries and dual-avoidance motives with Disparate – motivation are: At first: 1.nCAf2?– if here 1….nBxf2? 2.nQxf8? the nQ is paralyzed for Black and it is impossible 2…nQxg7??. After 1…nQxf8? White cannot play 2.nQxg7?? but after 2.nBxf2? nQxg7?? the nQ is paralyzed for White and the move 3.nQa7+? is impossible! The anti-dual effect is also demonstrated after 1.nQxf8 and here black cannot play 1…nQxg7? because the nQ is paralyzed for Black! THEMATICAL COMPLEX: Play of two trios of neutral pieces: FIRST TRIO: nCAc7, nBf6, nZf8 – in this trio we see a cyclical Passive Annihilation-captures AB – BC – CA, realized by the neutral Queen. SECOND TRIO: nCAc1, nBe1, nZf1 – in this trio we see a cyclical Active Annihilation-captures nBc3>nZxc3, nZd4>nCAxd4, nCAf2>nBxf2. This cycle is combined with a third-pin on the 1st line! A lot of half-moving paralysis (for Black and for the White) are demonstrated from the neutral Queen. These typical Disparate effects motivate tries and dual-avoidance moves in the different phases of both solutions. (Author)