No.1385 (NSR)

 No.1385 N.Shankar Ram (Индия) Оригинальные сказочные задачи JF-2019/I: январь – июнь’2019

Определения: (показать/спрятать)

 No.1385 N.Shankar Ram India original – 16.03.2019 Solution: (click to show/hide) white Qd5 Pa3c2 black Ce7g6 r=2                                            (3+2) Anti-Super Circe Calvet White Must Capture (4,4) Leaper e7, g6 1.Qd5-g5? 1...Cg6*c2[bCc2->f6]! 1.Qd5-e6? 1...Ce7*a3[bCa3->f6]! 1.Qd5-f7! {ZugZwang} 1...Cg6*c2[bCc2->h8] 2.Qf7*e7[wQe7->d4] Ch8*d4[bCd4->a4]{=} 1...Cg6*c2[bCc2->h7] 2.Qf7*e7[wQe7->d3] Ch7*d3[bCd3->a4]{=} 1...Cg6*c2[bCc2->h6] 2.Qf7*e7[wQe7->d2] Ch6*d2[bCd2->a4]{=} 1...Cg6*c2[bCc2->h5] 2.Qf7*e7[wQe7->d1] Ch5*d1[bCd1->a4]{=} 1...Cg6*c2[bCc2->h4] 2.Qf7*e7[wQe7->d8] Ch4*d8[bCd8->a4]{=} 1...Cg6*c2[bCc2->h3] 2.Qf7*e7[wQe7->d7] Ch3*d7[bCd7->a4]{=} 1...Cg6*c2[bCc2->h2] 2.Qf7*e7[wQe7->d6] Ch2*d6[bCd6->a4]{=} 1...Cg6*c2[bCc2->h1] 2.Qf7*e7[wQe7->d5] Ch1*d5[bCd5->a4]{=} 1...Cg6*c2[bCc2->g8] 2.Qf7*e7[wQe7->c4] Cg8*c4[bCc4->a4]{=} 1...Cg6*c2[bCc2->g7] 2.Qf7*e7[wQe7->c3] Cg7*c3[bCc3->a4]{=} 1...Cg6*c2[bCc2->g6] 2.Qf7*e7[wQe7->c2] Cg6*c2[bCc2->a4]{=} 1...Cg6*c2[bCc2->g5] 2.Qf7*e7[wQe7->c1] Cg5*c1[bCc1->a4]{=} 1...Cg6*c2[bCc2->g4] 2.Qf7*e7[wQe7->c8] Cg4*c8[bCc8->a4]{=} 1...Cg6*c2[bCc2->g3] 2.Qf7*e7[wQe7->c7] Cg3*c7[bCc7->a4]{=} 1...Cg6*c2[bCc2->g2] 2.Qf7*e7[wQe7->c6] Cg2*c6[bCc6->a4]{=} 1...Cg6*c2[bCc2->g1] 2.Qf7*e7[wQe7->c5] Cg1*c5[bCc5->a4]{=} 1...Cg6*c2[bCc2->f8] 2.Qf7*e7[wQe7->b4] Cf8*b4[bCb4->a4]{=} 1...Cg6*c2[bCc2->f6] 2.Qf7*e7[wQe7->b2] Cf6*b2[bCb2->a4]{=} 1...Cg6*c2[bCc2->f5] 2.Qf7*e7[wQe7->b1] Cf5*b1[bCb1->a4]{=} 1...Cg6*c2[bCc2->f4] 2.Qf7*e7[wQe7->b8] Cf4*b8[bCb8->a4]{=} 1...Cg6*c2[bCc2->f3] 2.Qf7*e7[wQe7->b7] Cf3*b7[bCb7->a4]{=} 1...Cg6*c2[bCc2->f2] 2.Qf7*e7[wQe7->b6] Cf2*b6[bCb6->a4]{=} 1...Cg6*c2[bCc2->f1] 2.Qf7*e7[wQe7->b5] Cf1*b5[bCb5->a4]{=} 1...Cg6*c2[bCc2->e8] 2.Qf7*e7[wQe7->a4] Ce8*a4{=} 1...Cg6*c2[bCc2->e6] 2.Qf7*e7[wQe7->a2] Ce6*a2[bCa2->a4]{=} 1...Cg6*c2[bCc2->e5] 2.Qf7*e7[wQe7->a1] Ce5*a1[bCa1->a4]{=} 1...Cg6*c2[bCc2->e4] 2.Qf7*e7[wQe7->a8] Ce4*a8[bCa8->a4]{=} 1...Cg6*c2[bCc2->e3] 2.Qf7*e7[wQe7->a7] Ce3*a7[bCa7->a4]{=} 1...Cg6*c2[bCc2->e2] 2.Qf7*e7[wQe7->a6] Ce2*a6[bCa6->a4]{=} 1...Cg6*c2[bCc2->e1] 2.Qf7*e7[wQe7->a5] Ce1*a5[bCa5->a4]{=} 1...Cg6*c2[bCc2->d8] 2.Qf7*e7[wQe7->h4] Cd8*h4[bCh4->a4]{=} 1...Cg6*c2[bCc2->d7] 2.Qf7*e7[wQe7->h3] Cd7*h3[bCh3->a4]{=} 1...Cg6*c2[bCc2->d6] 2.Qf7*e7[wQe7->h2] Cd6*h2[bCh2->a4]{=} 1...Cg6*c2[bCc2->d5] 2.Qf7*e7[wQe7->h1] Cd5*h1[bCh1->a4]{=} 1...Cg6*c2[bCc2->d4] 2.Qf7*e7[wQe7->h8] Cd4*h8[bCh8->a4]{=} 1...Cg6*c2[bCc2->d3] 2.Qf7*e7[wQe7->h7] Cd3*h7[bCh7->a4]{=} 1...Cg6*c2[bCc2->d2] 2.Qf7*e7[wQe7->h6] Cd2*h6[bCh6->a4]{=} 1...Cg6*c2[bCc2->d1] 2.Qf7*e7[wQe7->h5] Cd1*h5[bCh5->a4]{=} 1...Cg6*c2[bCc2->c8] 2.Qf7*e7[wQe7->g4] Cc8*g4[bCg4->a4]{=} 1...Cg6*c2[bCc2->c7] 2.Qf7*e7[wQe7->g3] Cc7*g3[bCg3->a4]{=} 1...Cg6*c2[bCc2->c6] 2.Qf7*e7[wQe7->g2] Cc6*g2[bCg2->a4]{=} 1...Cg6*c2[bCc2->c5] 2.Qf7*e7[wQe7->g1] Cc5*g1[bCg1->a4]{=} 1...Cg6*c2[bCc2->c4] 2.Qf7*e7[wQe7->g8] Cc4*g8[bCg8->a4]{=} 1...Cg6*c2[bCc2->c3] 2.Qf7*e7[wQe7->g7] Cc3*g7[bCg7->a4]{=} 1...Cg6*c2 2.Qf7*e7[wQe7->g6] Cc2*g6[bCg6->a4]{=} 1...Cg6*c2[bCc2->c1] 2.Qf7*e7[wQe7->g5] Cc1*g5[bCg5->a4]{=} 1...Cg6*c2[bCc2->b8] 2.Qf7*e7[wQe7->f4] Cb8*f4[bCf4->a4]{=} 1...Cg6*c2[bCc2->b7] 2.Qf7*e7[wQe7->f3] Cb7*f3[bCf3->a4]{=} 1...Cg6*c2[bCc2->b6] 2.Qf7*e7[wQe7->f2] Cb6*f2[bCf2->a4]{=} 1...Cg6*c2[bCc2->b5] 2.Qf7*e7[wQe7->f1] Cb5*f1[bCf1->a4]{=} 1...Cg6*c2[bCc2->b4] 2.Qf7*e7[wQe7->f8] Cb4*f8[bCf8->a4]{=} 1...Cg6*c2[bCc2->b3] 2.Qf7*e7[wQe7->f7] Cb3*f7[bCf7->a4]{=} 1...Cg6*c2[bCc2->b2] 2.Qf7*e7[wQe7->f6] Cb2*f6[bCf6->a4]{=} 1...Cg6*c2[bCc2->b1] 2.Qf7*e7[wQe7->f5] Cb1*f5[bCf5->a4]{=} 1...Cg6*c2[bCc2->a8] 2.Qf7*e7[wQe7->e4] Ca8*e4[bCe4->a4]{=} 1...Cg6*c2[bCc2->a7] 2.Qf7*e7[wQe7->e3] Ca7*e3[bCe3->a4]{=} 1...Cg6*c2[bCc2->a6] 2.Qf7*e7[wQe7->e2] Ca6*e2[bCe2->a4]{=} 1...Cg6*c2[bCc2->a5] 2.Qf7*e7[wQe7->e1] Ca5*e1[bCe1->a4]{=} 1...Cg6*c2[bCc2->a4] 2.Qf7*e7[wQe7->e8] Ca4*e8[bCe8->a4]{=} 1...Cg6*c2[bCc2->a2] 2.Qf7*e7[wQe7->e6] Ca2*e6[bCe6->a4]{=} 1...Cg6*c2[bCc2->a1] 2.Qf7*e7[wQe7->e5] Ca1*e5[bCe5->a4]{=} 1...Ce7*a3[bCa3->h8] 2.Qf7*g6[wQg6->d4] Ch8*d4[bCd4->c3]{=} 1...Ce7*a3[bCa3->h7] 2.Qf7*g6[wQg6->d3] Ch7*d3[bCd3->c3]{=} 1...Ce7*a3[bCa3->h6] 2.Qf7*g6[wQg6->d2] Ch6*d2[bCd2->c3]{=} 1...Ce7*a3[bCa3->h5] 2.Qf7*g6[wQg6->d1] Ch5*d1[bCd1->c3]{=} 1...Ce7*a3[bCa3->h4] 2.Qf7*g6[wQg6->d8] Ch4*d8[bCd8->c3]{=} 1...Ce7*a3[bCa3->h3] 2.Qf7*g6[wQg6->d7] Ch3*d7[bCd7->c3]{=} 1...Ce7*a3[bCa3->h2] 2.Qf7*g6[wQg6->d6] Ch2*d6[bCd6->c3]{=} 1...Ce7*a3[bCa3->h1] 2.Qf7*g6[wQg6->d5] Ch1*d5[bCd5->c3]{=} 1...Ce7*a3[bCa3->g8] 2.Qf7*g6[wQg6->c4] Cg8*c4[bCc4->c3]{=} 1...Ce7*a3[bCa3->g7] 2.Qf7*g6[wQg6->c3] Cg7*c3{=} 1...Ce7*a3[bCa3->g5] 2.Qf7*g6[wQg6->c1] Cg5*c1[bCc1->c3]{=} 1...Ce7*a3[bCa3->g4] 2.Qf7*g6[wQg6->c8] Cg4*c8[bCc8->c3]{=} 1...Ce7*a3[bCa3->g3] 2.Qf7*g6[wQg6->c7] Cg3*c7[bCc7->c3]{=} 1...Ce7*a3[bCa3->g2] 2.Qf7*g6[wQg6->c6] Cg2*c6[bCc6->c3]{=} 1...Ce7*a3[bCa3->g1] 2.Qf7*g6[wQg6->c5] Cg1*c5[bCc5->c3]{=} 1...Ce7*a3[bCa3->f8] 2.Qf7*g6[wQg6->b4] Cf8*b4[bCb4->c3]{=} 1...Ce7*a3[bCa3->f6] 2.Qf7*g6[wQg6->b2] Cf6*b2[bCb2->c3]{=} 1...Ce7*a3[bCa3->f5] 2.Qf7*g6[wQg6->b1] Cf5*b1[bCb1->c3]{=} 1...Ce7*a3[bCa3->f4] 2.Qf7*g6[wQg6->b8] Cf4*b8[bCb8->c3]{=} 1...Ce7*a3[bCa3->f3] 2.Qf7*g6[wQg6->b7] Cf3*b7[bCb7->c3]{=} 1...Ce7*a3[bCa3->f2] 2.Qf7*g6[wQg6->b6] Cf2*b6[bCb6->c3]{=} 1...Ce7*a3[bCa3->f1] 2.Qf7*g6[wQg6->b5] Cf1*b5[bCb5->c3]{=} 1...Ce7*a3[bCa3->e8] 2.Qf7*g6[wQg6->a4] Ce8*a4[bCa4->c3]{=} 1...Ce7*a3[bCa3->e7] 2.Qf7*g6[wQg6->a3] Ce7*a3[bCa3->c3]{=} 1...Ce7*a3[bCa3->e6] 2.Qf7*g6[wQg6->a2] Ce6*a2[bCa2->c3]{=} 1...Ce7*a3[bCa3->e5] 2.Qf7*g6[wQg6->a1] Ce5*a1[bCa1->c3]{=} 1...Ce7*a3[bCa3->e4] 2.Qf7*g6[wQg6->a8] Ce4*a8[bCa8->c3]{=} 1...Ce7*a3[bCa3->e3] 2.Qf7*g6[wQg6->a7] Ce3*a7[bCa7->c3]{=} 1...Ce7*a3[bCa3->e2] 2.Qf7*g6[wQg6->a6] Ce2*a6[bCa6->c3]{=} 1...Ce7*a3[bCa3->e1] 2.Qf7*g6[wQg6->a5] Ce1*a5[bCa5->c3]{=} 1...Ce7*a3[bCa3->d8] 2.Qf7*g6[wQg6->h4] Cd8*h4[bCh4->c3]{=} 1...Ce7*a3[bCa3->d7] 2.Qf7*g6[wQg6->h3] Cd7*h3[bCh3->c3]{=} 1...Ce7*a3[bCa3->d6] 2.Qf7*g6[wQg6->h2] Cd6*h2[bCh2->c3]{=} 1...Ce7*a3[bCa3->d5] 2.Qf7*g6[wQg6->h1] Cd5*h1[bCh1->c3]{=} 1...Ce7*a3[bCa3->d4] 2.Qf7*g6[wQg6->h8] Cd4*h8[bCh8->c3]{=} 1...Ce7*a3[bCa3->d3] 2.Qf7*g6[wQg6->h7] Cd3*h7[bCh7->c3]{=} 1...Ce7*a3[bCa3->d2] 2.Qf7*g6[wQg6->h6] Cd2*h6[bCh6->c3]{=} 1...Ce7*a3[bCa3->d1] 2.Qf7*g6[wQg6->h5] Cd1*h5[bCh5->c3]{=} 1...Ce7*a3[bCa3->c8] 2.Qf7*g6[wQg6->g4] Cc8*g4[bCg4->c3]{=} 1...Ce7*a3[bCa3->c7] 2.Qf7*g6[wQg6->g3] Cc7*g3[bCg3->c3]{=} 1...Ce7*a3[bCa3->c6] 2.Qf7*g6[wQg6->g2] Cc6*g2[bCg2->c3]{=} 1...Ce7*a3[bCa3->c5] 2.Qf7*g6[wQg6->g1] Cc5*g1[bCg1->c3]{=} 1...Ce7*a3[bCa3->c4] 2.Qf7*g6[wQg6->g8] Cc4*g8[bCg8->c3]{=} 1...Ce7*a3[bCa3->c3] 2.Qf7*g6[wQg6->g7] Cc3*g7[bCg7->c3]{=} 1...Ce7*a3[bCa3->c1] 2.Qf7*g6[wQg6->g5] Cc1*g5[bCg5->c3]{=} 1...Ce7*a3[bCa3->b8] 2.Qf7*g6[wQg6->f4] Cb8*f4[bCf4->c3]{=} 1...Ce7*a3[bCa3->b7] 2.Qf7*g6[wQg6->f3] Cb7*f3[bCf3->c3]{=} 1...Ce7*a3[bCa3->b6] 2.Qf7*g6[wQg6->f2] Cb6*f2[bCf2->c3]{=} 1...Ce7*a3[bCa3->b5] 2.Qf7*g6[wQg6->f1] Cb5*f1[bCf1->c3]{=} 1...Ce7*a3[bCa3->b4] 2.Qf7*g6[wQg6->f8] Cb4*f8[bCf8->c3]{=} 1...Ce7*a3[bCa3->b3] 2.Qf7*g6[wQg6->f7] Cb3*f7[bCf7->c3]{=} 1...Ce7*a3[bCa3->b2] 2.Qf7*g6[wQg6->f6] Cb2*f6[bCf6->c3]{=} 1...Ce7*a3[bCa3->b1] 2.Qf7*g6[wQg6->f5] Cb1*f5[bCf5->c3]{=} 1...Ce7*a3[bCa3->a8] 2.Qf7*g6[wQg6->e4] Ca8*e4[bCe4->c3]{=} 1...Ce7*a3[bCa3->a7] 2.Qf7*g6[wQg6->e3] Ca7*e3[bCe3->c3]{=} 1...Ce7*a3[bCa3->a6] 2.Qf7*g6[wQg6->e2] Ca6*e2[bCe2->c3]{=} 1...Ce7*a3[bCa3->a5] 2.Qf7*g6[wQg6->e1] Ca5*e1[bCe1->c3]{=} 1...Ce7*a3[bCa3->a4] 2.Qf7*g6[wQg6->e8] Ca4*e8[bCe8->c3]{=} 1...Ce7*a3 2.Qf7*g6[wQg6->e7] Ca3*e7[bCe7->c3]{=} 1...Ce7*a3[bCa3->a2] 2.Qf7*g6[wQg6->e6] Ca2*e6[bCe6->c3]{=} 1...Ce7*a3[bCa3->a1] 2.Qf7*g6[wQg6->e5] Ca1*e5[bCe5->c3]{= (C+ by WinChloe v3.43)} 2 ODT style tries defeated by interferences on f6 122 variations 366 rebirths Can be “generalised” as follows: For n = 4,5,6..., on a 2nx2n board, with a1 as (1,1), keep WPs: (1,3), (3,2); WQ: (n,n+1); Black (n,n) Leapers: (n+1,n+3), (n+3,n+2) r=2, with same conditions 8n2-6 variations, 24n2-18 rebirths (Author)

2 комментария: No.1385 (NSR)

1. seetharaman пишет:

Surprisingly this 4,4 leaper seems to be the only piece that has a unique square to move to from any square on the 8×8 board! Good find. The generalised extension is for mathematicians only !

2. Jacques Rotenberg пишет:

on one hand too much mechanical
on the other hand nice, light, and rather easy to understand
The tries give the minimum of “chess perfume” that is needed : the queen must stick to the black pieces in order not to be intercepted

This comes to underline that the (4,4)leaper has a special quality : anywhere on the board it can play to one square and to one square only.