FAIRINGS...

N ${ }^{\text {0 }}$ 40: October 2014
Chris.Feather, Holly Tree Cottage, Yarwell Road, Wansford, Cambs., PE8 6PL, England Distribution: stephen.emmerson@ntlworld.com
Welcome to a new friend in Sébastien Luce and an old one in Klaus Wenda! In $\underline{\mathbf{3}}$ the Pa8 is quite possible in AntipodeanCirce. As usual, some introductory comments are on page 2 and definitions are at the end. Best wishes to all.
1.
2. Symmetry antiCirce

$\mathrm{h} \# 23111$ ecardinal

h\#2 2111
321113 s
3. Antipodean Circe

h\#2
7. Sébastien Luce

$\mathrm{h}==4$
Einstein

8. Klaus Wenda

hs\#6 煺=siren
9.Sébastien Luce \& CJF

ser-h\#4 5 solutions PWC
$\underline{7}$ 1.Se3[>P] Kf3 2.Rb7[>B]+ Ke2 3.Bf3[>S] Kf1 4.Sh2[>P] Se2[>P]= = A neat "descending-Einstein" demonstration! $\underline{\boldsymbol{8}} 1 . \mathrm{a} 4 \mathrm{~h} 5 \ldots 4 . \mathrm{a} 7 \mathrm{hxg} 25 \mathrm{a} 8=\mathrm{SI}$ g1=SI $6 . \mathrm{SIg} 2$ (Zugzwang) SIxf1-e1\# A double excelsior with matching fairy promotions: the hs\# seems well suited to this idea and the construction is typically skilful.
$\underline{9} 1 . \operatorname{exf} 1=\mathrm{S}$ [Le2] 2.Sg3 3.Sxf5[Pg3] 4.Se7 Lxe7-e8[Se2]\#, 1.exf1=B[Le2] 2.Bxe2[Lf1] 3.Bc4 4.Bxf1[Lc4] Lxf7-g8[Pc4]\#, 1.gxf1=R[Lg2] 2.Ra1 3.Ra7 4.Rb7 Lxb7-a8[Rg2]\#, 1.gxf1=Q[Lg2] 2.Qf3 3.Qd5 4.Qxg2[Ld5] Lxf7-g8[Pd5]\# \& gxf1=L[Lg2] 2.Lxf5f6[Pf1] 3.Lxd6-c6[Lf6] 4.Lxg2-h1[Lc6] Lxf7-f8[Pf6]\# An AUW+ with characteristic PWC effects. Mostly Sébastien's work, including the idea and much of the detail.
10.

ser-h=8 R=rosehopper
11.Symmetry antiCirce

ser-h\#9*
4 variations
12. PWC

ser=h\#10*
$N=$ rose $=$ rose-locust 10 1.g1=RP 2.RPd4 3.exd1=RP 4.RPh1 5.RPe4 6.RPb1 7.d1=RP 8.f1=RP Kb3= Four RP promotions in miniature. 11 Set:1...Qf1\# Sols: 1.a5 ... 5.a1=Q 6.Qg1 7.Qxh2a7 8.Kh2 9.Kxh3-a6 Qb6\#, 5.a1=R 6.Rg1 7.Rg2 8.Rxh2-a7 9.Rb7 Qg2\#, 5.a1=B 6.Bxb2-g7 7.Bd4 8.Ba7 9.Bb8 Qg1\# \& 5.a1=S 6.Sc2 7.Se1 8.Sf3 9.Sxh2-a7 Qh2\# 4 round trips (a7-a7); 5 different Q-mates. $\underline{\mathbf{1 2}}$ Set:1...ROd8\# Sols: 1.LSxe6-c7[ROg7] 2.LSxg7-h5[ROc7] 3.LSxc7-b5[ROh5] 4.LSxh5-g3[ROb5] 5.LSxb5-c3[ROg3] 6.LSx g3-e2[ROc3] 7.LSxc3-a2[ROe2] 8.LSxe2-f4[ROa2] 9.Kg7 10.Kf8 ROe6\# A paradoxical idea: without ROe6 \& LS it is ser-h\# in 2, but getting them out of the way for mate on e6 requires the RO which starts there to reach a 2 ! - a protracted hideaway.
13.

ser-h\#12
$\boldsymbol{\omega}=$ =equihopper
14.

ser-h\#18*
$\square=$ gnu $=$ rosehopper
15. PWC

ser-h\#26*
$\omega=$ rose $=$ rose-locust
13. 1.nPd2 2.nPd1=nEQ 3.nEQf5 4.nEQf3 5.EQxd4[Pd2] 6.EQh4 7.EQxd2 8.EQxf4 [Pf2] 9.EQxf2 10.EQd4 11.EQh2 12.nEQd3 Kf2\# Round trips. $\mathbf{1 4}$ Set:1...GNd7\# Sol.: 1.RPa5 2.Kb7 3.Kc6 4.RPe5 5.RPb8 6.Kd6 7.Ke5 8.Kd4 9.RPf5 10.Kd3 11.RPb2 12.Kc2 13.Kb1 14.Ka2 15.Ka3 16.RPb1 17.Ka2 18.Ka1 GNb4\# Corner-corner echo. 15 Set: 1...ROh4\# Sol.:1.LSxf5-d4[ROg7] 2.Kxg7[ROh8] 3.Kf8 4.Ke7 5.Kxf6[Se7] 6.Kg7 7.Kxh8[ROg7] 8.Kh7 9.Kh6 10.Kg5 11.Kf6 12.Kxg7[ROf6] 13.Kf7 14.Ke6 15.Kxf6[ROe6] 16.Kxe7[Sf6] 17.Kd6 18.Kxe6[ROd6] 19.Kxf6[Se6] 20.LSxe6g7[Sd4] 21.LSxd4-b5[Sg7] 22.Kxg7[Sf6] 23.Kh8 24.LSxd6-f5[ROb5] 25.LSxb5a7[ROf5] 26.LSxf5-g7[ROa7] ROc6\# More round trips.

This issue's originals

The h\#2s are all easy, though I have tried to make $\mathbf{3}$ as confusing as possible... Composers will recognise the difficulty of guarding the BK's field in 2: the 3 WSs provide by far the neatest way I could see. There is no AUW in 5 (but see the solution). I could not resist adding the first move in $\mathbf{6}$. Sébastien's Einstein problem works down rather than up! Some readers may already have seen other examples by Klaus of his P-promotion idea, which shows his usual balance of form and content. Five solutions and 5 possible kinds of piece makes the joint problem very easy to solve, but it was fun to compose. Another obvious promotion idea appears in $\mathbf{1 0}$ and the same might be said about 11, but it is not only about promotions! Please don't be frightened by the roses; there is diagrammatic help below! $\mathbf{1 4}$ and $\mathbf{1 5}$ show standard but surely agreeable series-problem ideas; however $\mathbf{1 2}$ is paradoxical. In $\mathbf{1 3}$ the mate is almost there in the diagram. All these problems have been tested by Popeye.

Definitions

Problem types:

Helpmate/helpstalemate ($\mathbf{h} \# / \mathbf{h}=$): Black plays and helps White to mate him in the stated number of moves, unless that number ends in " $1 / 2$ ", when it is White who starts. In the case of helpdoublestalemate ($\mathbf{h}==$) the final white move stalemates both sides.

Serieshelpmate/stalemate (ser-h\#/ser-h=): Black plays the stated number of helpful moves while White remains still; then White (stale)mates in one. Black may check only on the last move. The asterisk * indicates a set mate in 1, playable if it were White's move in the diagram position.
Helpselfmate (hs\#): White plays first and Black helps until he is forced to mate White on his last move.

Conditions: Circe (rebirth squares): Captured units are reborn on their game array square. R, B \& S go to the square of the same colour as the capture; Ps stay on the file of capture; fairy pieces go to the promotion square of the file of capture. (NB: orthodox neutrals are not fairy pieces!) If the rebirth square is occupied the capture is normal.
antiCirce: After a capture the capturing piece (Ks included) must immediately be removed to its Circe rebirth square (see above). This square must be vacant, else the capture is illegal.
SymmetryantiCirce: Capturing units are reborn on the square which lies at an equal distance (in a straight line) beyond the board's midpoint. Thus a capture on c4 produces a rebirth on $\mathrm{f5}$, and so on. This square must be vacant, else the capture is illegal.
Antipodean Circe: As Circe but the rebirth square for a captured piece lies at a distance of 4,4 from the capture square (the "antipodes" as it would be on a spherical board). Thus a capture on c1 produces a rebirth on g 5 . If the rebirth square is occupied the capture is normal. Pawns reborn on promotion squares promote immediately.
DiagramCirce: Captured units are reborn on the square which they occupied in the diagram position. If the rebirth square is occupied the capture is normal.
DiagramantiCirce: As antiCirce except that the rebirth square for the capturing unit is the one where it stands in the diagram. The Cheylan sub-type has the additional provision that a capture by a unit on its own rebirth square is not allowed.
PWC (PlatzWechselCirce): Captured units reappear on the square just vacated by the capturing unit. Pawns appearing on their 1st rank have no moving or checking power until reactivated by being captured again, while those appearing on their 8th rank are promoted instantly, at the choice of the capturing side.
Einstein: When they capture, units change type, moving up the sequence $\mathrm{P}>\mathrm{S}>\mathrm{B}>\mathrm{R}>\mathrm{Q}$ (capturing Qs remain Qs), but they move back down the sequence $\mathrm{P}<\mathrm{S}<\mathrm{B}<\mathrm{R}<\mathrm{Q}$ when they move without capturing (moving Ps remain Ps). Since Ps may thus appear on the $1^{\text {st }}$ or $8^{\text {th }}$ rank they are allowed to make $1-, 2$ - or 3 -square steps from there (with an extra en passant possibility), but no normal P-promotion is allowed.

Piece characteristics:

Neutrality: A unit with this characteristic may be regarded as of either colour by the side whose turn it is to play. Neutral pawns (速) promote to neutral pieces. For rebirths neutrals are (temporarily) of the colour opposite to that of the capturing piece.

Unorthodox pieces:

Cardinal C: Moves as a bishop but reflects (once per move only) at the board edge so as to continue on the adjacent diagonal of the other colour, e.g. Ca5-g6 via d8 and e8. Siren SI: Moves on Q-lines, but captures by hopping over and removing an adverse unit, landing on the next (necessarily empty) square, i.e. it captures like a locust.

Locust L: Uses Q-lines but moves only to capture, by hopping over and removing an adverse unit and landing on the next (necessarily empty) square on the line. For example in 9 the Ld6 guards c 7 but would not do so if b 8 were occupied.
Equihopper EQ: Whether moving or capturing, the EQ hops on any straight line to an equal distance beyond any one unit (the hurdle). Interference is possible on the line.
Rose RO: Moves along a deflecting line of knight moves e.g. ROb4-c6/e7/g6/h4/g2/ $\mathrm{e} 1 / \mathrm{c} 2$, deflecting always to the same side. This has been described as circular but of course two circles (radii $\sqrt{ } 8$ and $\sqrt{ } 9$) are involved. Null moves are not allowed. Some
people find the rose's move difficult, so for further help please see the diagrams below. Rosehopper RP: Whether moving or capturing, the RP hops on rose lines over any one unit (the hurdle) to the next square on the line.
Rose-locust LS: A locust (see above) moving only on rose lines.
Gnu GN: A combined (1,2/2,1)- and (1,3/3,1)-leaper; e.g GNa6 to c5 or d5.

Rose moves

The rose may move to the squares indicated © , unless blocked on its line. There are only 10 basic positions: those not shown may be obtained by rotation/reflection. The rose-locust and rosehopper use the same lines in slightly different ways (see above).

[0,0]
9 moves

[1,2] 14 moves

[0,1]

[1,3]
14 moves

[0,2] 12 moves

[2,2]
16 moves

$[0,3] \quad 12$ moves

[2,3]
15 moves

[1,1] 12 moves

$[3,3]$
14 moves

