No.1385 |
Original Fairy problems |
Definitions: (click to show/hide)
Anti-Super Circe: On making a capture, any capturing unit (including the King) is reborn on any free field on the board without causing a self-check or a selfmate. Thus every move has two active parts: capturing component (capture of enemy piece) and rebirth (replacing) component. If the first or second component is not possible, the move is illegal. The captured unit disappears as in normal chess. Pawns (white, black, neutrals, half-neutrals) can be reborn on the first or eight row. When reborn on the first row (for Black) or the 8th row (for White), the promotion (as the second move’s part) is obligatory and the promoted unit is chosen by the capturing side. White reborn Pawns on 1st rank (black on 8th) have no power. Normal, orthodox rules for castling and en passant are in force with the following additional elements: castling is permitted with the reborn King or (plus) Rook, and en passant is possible in combination with the Pawn’s promotion as second component of the same capturing move. Anti Super Circe Calvet: Captures on rebirth square allowed.
White must capture: If possible, else moves normally.
No.1385 N.Shankar Ram |
Solution: (click to show/hide) |
white Qd5 Pa3c2
black Ce7g6
r=2 (3+2) |
1.Qd5-g5? 1...Cg6*c2[bCc2->f6]!
1.Qd5-e6? 1...Ce7*a3[bCa3->f6]!
1.Qd5-f7! {ZugZwang}
1...Cg6*c2[bCc2->h8] 2.Qf7*e7[wQe7->d4] Ch8*d4[bCd4->a4]{=}
1...Cg6*c2[bCc2->h7] 2.Qf7*e7[wQe7->d3] Ch7*d3[bCd3->a4]{=}
1...Cg6*c2[bCc2->h6] 2.Qf7*e7[wQe7->d2] Ch6*d2[bCd2->a4]{=}
1...Cg6*c2[bCc2->h5] 2.Qf7*e7[wQe7->d1] Ch5*d1[bCd1->a4]{=}
1...Cg6*c2[bCc2->h4] 2.Qf7*e7[wQe7->d8] Ch4*d8[bCd8->a4]{=}
1...Cg6*c2[bCc2->h3] 2.Qf7*e7[wQe7->d7] Ch3*d7[bCd7->a4]{=}
1...Cg6*c2[bCc2->h2] 2.Qf7*e7[wQe7->d6] Ch2*d6[bCd6->a4]{=}
1...Cg6*c2[bCc2->h1] 2.Qf7*e7[wQe7->d5] Ch1*d5[bCd5->a4]{=}
1...Cg6*c2[bCc2->g8] 2.Qf7*e7[wQe7->c4] Cg8*c4[bCc4->a4]{=}
1...Cg6*c2[bCc2->g7] 2.Qf7*e7[wQe7->c3] Cg7*c3[bCc3->a4]{=}
1...Cg6*c2[bCc2->g6] 2.Qf7*e7[wQe7->c2] Cg6*c2[bCc2->a4]{=}
1...Cg6*c2[bCc2->g5] 2.Qf7*e7[wQe7->c1] Cg5*c1[bCc1->a4]{=}
1...Cg6*c2[bCc2->g4] 2.Qf7*e7[wQe7->c8] Cg4*c8[bCc8->a4]{=}
1...Cg6*c2[bCc2->g3] 2.Qf7*e7[wQe7->c7] Cg3*c7[bCc7->a4]{=}
1...Cg6*c2[bCc2->g2] 2.Qf7*e7[wQe7->c6] Cg2*c6[bCc6->a4]{=}
1...Cg6*c2[bCc2->g1] 2.Qf7*e7[wQe7->c5] Cg1*c5[bCc5->a4]{=}
1...Cg6*c2[bCc2->f8] 2.Qf7*e7[wQe7->b4] Cf8*b4[bCb4->a4]{=}
1...Cg6*c2[bCc2->f6] 2.Qf7*e7[wQe7->b2] Cf6*b2[bCb2->a4]{=}
1...Cg6*c2[bCc2->f5] 2.Qf7*e7[wQe7->b1] Cf5*b1[bCb1->a4]{=}
1...Cg6*c2[bCc2->f4] 2.Qf7*e7[wQe7->b8] Cf4*b8[bCb8->a4]{=}
1...Cg6*c2[bCc2->f3] 2.Qf7*e7[wQe7->b7] Cf3*b7[bCb7->a4]{=}
1...Cg6*c2[bCc2->f2] 2.Qf7*e7[wQe7->b6] Cf2*b6[bCb6->a4]{=}
1...Cg6*c2[bCc2->f1] 2.Qf7*e7[wQe7->b5] Cf1*b5[bCb5->a4]{=}
1...Cg6*c2[bCc2->e8] 2.Qf7*e7[wQe7->a4] Ce8*a4{=}
1...Cg6*c2[bCc2->e6] 2.Qf7*e7[wQe7->a2] Ce6*a2[bCa2->a4]{=}
1...Cg6*c2[bCc2->e5] 2.Qf7*e7[wQe7->a1] Ce5*a1[bCa1->a4]{=}
1...Cg6*c2[bCc2->e4] 2.Qf7*e7[wQe7->a8] Ce4*a8[bCa8->a4]{=}
1...Cg6*c2[bCc2->e3] 2.Qf7*e7[wQe7->a7] Ce3*a7[bCa7->a4]{=}
1...Cg6*c2[bCc2->e2] 2.Qf7*e7[wQe7->a6] Ce2*a6[bCa6->a4]{=}
1...Cg6*c2[bCc2->e1] 2.Qf7*e7[wQe7->a5] Ce1*a5[bCa5->a4]{=}
1...Cg6*c2[bCc2->d8] 2.Qf7*e7[wQe7->h4] Cd8*h4[bCh4->a4]{=}
1...Cg6*c2[bCc2->d7] 2.Qf7*e7[wQe7->h3] Cd7*h3[bCh3->a4]{=}
1...Cg6*c2[bCc2->d6] 2.Qf7*e7[wQe7->h2] Cd6*h2[bCh2->a4]{=}
1...Cg6*c2[bCc2->d5] 2.Qf7*e7[wQe7->h1] Cd5*h1[bCh1->a4]{=}
1...Cg6*c2[bCc2->d4] 2.Qf7*e7[wQe7->h8] Cd4*h8[bCh8->a4]{=}
1...Cg6*c2[bCc2->d3] 2.Qf7*e7[wQe7->h7] Cd3*h7[bCh7->a4]{=}
1...Cg6*c2[bCc2->d2] 2.Qf7*e7[wQe7->h6] Cd2*h6[bCh6->a4]{=}
1...Cg6*c2[bCc2->d1] 2.Qf7*e7[wQe7->h5] Cd1*h5[bCh5->a4]{=}
1...Cg6*c2[bCc2->c8] 2.Qf7*e7[wQe7->g4] Cc8*g4[bCg4->a4]{=}
1...Cg6*c2[bCc2->c7] 2.Qf7*e7[wQe7->g3] Cc7*g3[bCg3->a4]{=}
1...Cg6*c2[bCc2->c6] 2.Qf7*e7[wQe7->g2] Cc6*g2[bCg2->a4]{=}
1...Cg6*c2[bCc2->c5] 2.Qf7*e7[wQe7->g1] Cc5*g1[bCg1->a4]{=}
1...Cg6*c2[bCc2->c4] 2.Qf7*e7[wQe7->g8] Cc4*g8[bCg8->a4]{=}
1...Cg6*c2[bCc2->c3] 2.Qf7*e7[wQe7->g7] Cc3*g7[bCg7->a4]{=}
1...Cg6*c2 2.Qf7*e7[wQe7->g6] Cc2*g6[bCg6->a4]{=}
1...Cg6*c2[bCc2->c1] 2.Qf7*e7[wQe7->g5] Cc1*g5[bCg5->a4]{=}
1...Cg6*c2[bCc2->b8] 2.Qf7*e7[wQe7->f4] Cb8*f4[bCf4->a4]{=}
1...Cg6*c2[bCc2->b7] 2.Qf7*e7[wQe7->f3] Cb7*f3[bCf3->a4]{=}
1...Cg6*c2[bCc2->b6] 2.Qf7*e7[wQe7->f2] Cb6*f2[bCf2->a4]{=}
1...Cg6*c2[bCc2->b5] 2.Qf7*e7[wQe7->f1] Cb5*f1[bCf1->a4]{=}
1...Cg6*c2[bCc2->b4] 2.Qf7*e7[wQe7->f8] Cb4*f8[bCf8->a4]{=}
1...Cg6*c2[bCc2->b3] 2.Qf7*e7[wQe7->f7] Cb3*f7[bCf7->a4]{=}
1...Cg6*c2[bCc2->b2] 2.Qf7*e7[wQe7->f6] Cb2*f6[bCf6->a4]{=}
1...Cg6*c2[bCc2->b1] 2.Qf7*e7[wQe7->f5] Cb1*f5[bCf5->a4]{=}
1...Cg6*c2[bCc2->a8] 2.Qf7*e7[wQe7->e4] Ca8*e4[bCe4->a4]{=}
1...Cg6*c2[bCc2->a7] 2.Qf7*e7[wQe7->e3] Ca7*e3[bCe3->a4]{=}
1...Cg6*c2[bCc2->a6] 2.Qf7*e7[wQe7->e2] Ca6*e2[bCe2->a4]{=}
1...Cg6*c2[bCc2->a5] 2.Qf7*e7[wQe7->e1] Ca5*e1[bCe1->a4]{=}
1...Cg6*c2[bCc2->a4] 2.Qf7*e7[wQe7->e8] Ca4*e8[bCe8->a4]{=}
1...Cg6*c2[bCc2->a2] 2.Qf7*e7[wQe7->e6] Ca2*e6[bCe6->a4]{=}
1...Cg6*c2[bCc2->a1] 2.Qf7*e7[wQe7->e5] Ca1*e5[bCe5->a4]{=}
1...Ce7*a3[bCa3->h8] 2.Qf7*g6[wQg6->d4] Ch8*d4[bCd4->c3]{=}
1...Ce7*a3[bCa3->h7] 2.Qf7*g6[wQg6->d3] Ch7*d3[bCd3->c3]{=}
1...Ce7*a3[bCa3->h6] 2.Qf7*g6[wQg6->d2] Ch6*d2[bCd2->c3]{=}
1...Ce7*a3[bCa3->h5] 2.Qf7*g6[wQg6->d1] Ch5*d1[bCd1->c3]{=}
1...Ce7*a3[bCa3->h4] 2.Qf7*g6[wQg6->d8] Ch4*d8[bCd8->c3]{=}
1...Ce7*a3[bCa3->h3] 2.Qf7*g6[wQg6->d7] Ch3*d7[bCd7->c3]{=}
1...Ce7*a3[bCa3->h2] 2.Qf7*g6[wQg6->d6] Ch2*d6[bCd6->c3]{=}
1...Ce7*a3[bCa3->h1] 2.Qf7*g6[wQg6->d5] Ch1*d5[bCd5->c3]{=}
1...Ce7*a3[bCa3->g8] 2.Qf7*g6[wQg6->c4] Cg8*c4[bCc4->c3]{=}
1...Ce7*a3[bCa3->g7] 2.Qf7*g6[wQg6->c3] Cg7*c3{=}
1...Ce7*a3[bCa3->g5] 2.Qf7*g6[wQg6->c1] Cg5*c1[bCc1->c3]{=}
1...Ce7*a3[bCa3->g4] 2.Qf7*g6[wQg6->c8] Cg4*c8[bCc8->c3]{=}
1...Ce7*a3[bCa3->g3] 2.Qf7*g6[wQg6->c7] Cg3*c7[bCc7->c3]{=}
1...Ce7*a3[bCa3->g2] 2.Qf7*g6[wQg6->c6] Cg2*c6[bCc6->c3]{=}
1...Ce7*a3[bCa3->g1] 2.Qf7*g6[wQg6->c5] Cg1*c5[bCc5->c3]{=}
1...Ce7*a3[bCa3->f8] 2.Qf7*g6[wQg6->b4] Cf8*b4[bCb4->c3]{=}
1...Ce7*a3[bCa3->f6] 2.Qf7*g6[wQg6->b2] Cf6*b2[bCb2->c3]{=}
1...Ce7*a3[bCa3->f5] 2.Qf7*g6[wQg6->b1] Cf5*b1[bCb1->c3]{=}
1...Ce7*a3[bCa3->f4] 2.Qf7*g6[wQg6->b8] Cf4*b8[bCb8->c3]{=}
1...Ce7*a3[bCa3->f3] 2.Qf7*g6[wQg6->b7] Cf3*b7[bCb7->c3]{=}
1...Ce7*a3[bCa3->f2] 2.Qf7*g6[wQg6->b6] Cf2*b6[bCb6->c3]{=}
1...Ce7*a3[bCa3->f1] 2.Qf7*g6[wQg6->b5] Cf1*b5[bCb5->c3]{=}
1...Ce7*a3[bCa3->e8] 2.Qf7*g6[wQg6->a4] Ce8*a4[bCa4->c3]{=}
1...Ce7*a3[bCa3->e7] 2.Qf7*g6[wQg6->a3] Ce7*a3[bCa3->c3]{=}
1...Ce7*a3[bCa3->e6] 2.Qf7*g6[wQg6->a2] Ce6*a2[bCa2->c3]{=}
1...Ce7*a3[bCa3->e5] 2.Qf7*g6[wQg6->a1] Ce5*a1[bCa1->c3]{=}
1...Ce7*a3[bCa3->e4] 2.Qf7*g6[wQg6->a8] Ce4*a8[bCa8->c3]{=}
1...Ce7*a3[bCa3->e3] 2.Qf7*g6[wQg6->a7] Ce3*a7[bCa7->c3]{=}
1...Ce7*a3[bCa3->e2] 2.Qf7*g6[wQg6->a6] Ce2*a6[bCa6->c3]{=}
1...Ce7*a3[bCa3->e1] 2.Qf7*g6[wQg6->a5] Ce1*a5[bCa5->c3]{=}
1...Ce7*a3[bCa3->d8] 2.Qf7*g6[wQg6->h4] Cd8*h4[bCh4->c3]{=}
1...Ce7*a3[bCa3->d7] 2.Qf7*g6[wQg6->h3] Cd7*h3[bCh3->c3]{=}
1...Ce7*a3[bCa3->d6] 2.Qf7*g6[wQg6->h2] Cd6*h2[bCh2->c3]{=}
1...Ce7*a3[bCa3->d5] 2.Qf7*g6[wQg6->h1] Cd5*h1[bCh1->c3]{=}
1...Ce7*a3[bCa3->d4] 2.Qf7*g6[wQg6->h8] Cd4*h8[bCh8->c3]{=}
1...Ce7*a3[bCa3->d3] 2.Qf7*g6[wQg6->h7] Cd3*h7[bCh7->c3]{=}
1...Ce7*a3[bCa3->d2] 2.Qf7*g6[wQg6->h6] Cd2*h6[bCh6->c3]{=}
1...Ce7*a3[bCa3->d1] 2.Qf7*g6[wQg6->h5] Cd1*h5[bCh5->c3]{=}
1...Ce7*a3[bCa3->c8] 2.Qf7*g6[wQg6->g4] Cc8*g4[bCg4->c3]{=}
1...Ce7*a3[bCa3->c7] 2.Qf7*g6[wQg6->g3] Cc7*g3[bCg3->c3]{=}
1...Ce7*a3[bCa3->c6] 2.Qf7*g6[wQg6->g2] Cc6*g2[bCg2->c3]{=}
1...Ce7*a3[bCa3->c5] 2.Qf7*g6[wQg6->g1] Cc5*g1[bCg1->c3]{=}
1...Ce7*a3[bCa3->c4] 2.Qf7*g6[wQg6->g8] Cc4*g8[bCg8->c3]{=}
1...Ce7*a3[bCa3->c3] 2.Qf7*g6[wQg6->g7] Cc3*g7[bCg7->c3]{=}
1...Ce7*a3[bCa3->c1] 2.Qf7*g6[wQg6->g5] Cc1*g5[bCg5->c3]{=}
1...Ce7*a3[bCa3->b8] 2.Qf7*g6[wQg6->f4] Cb8*f4[bCf4->c3]{=}
1...Ce7*a3[bCa3->b7] 2.Qf7*g6[wQg6->f3] Cb7*f3[bCf3->c3]{=}
1...Ce7*a3[bCa3->b6] 2.Qf7*g6[wQg6->f2] Cb6*f2[bCf2->c3]{=}
1...Ce7*a3[bCa3->b5] 2.Qf7*g6[wQg6->f1] Cb5*f1[bCf1->c3]{=}
1...Ce7*a3[bCa3->b4] 2.Qf7*g6[wQg6->f8] Cb4*f8[bCf8->c3]{=}
1...Ce7*a3[bCa3->b3] 2.Qf7*g6[wQg6->f7] Cb3*f7[bCf7->c3]{=}
1...Ce7*a3[bCa3->b2] 2.Qf7*g6[wQg6->f6] Cb2*f6[bCf6->c3]{=}
1...Ce7*a3[bCa3->b1] 2.Qf7*g6[wQg6->f5] Cb1*f5[bCf5->c3]{=}
1...Ce7*a3[bCa3->a8] 2.Qf7*g6[wQg6->e4] Ca8*e4[bCe4->c3]{=}
1...Ce7*a3[bCa3->a7] 2.Qf7*g6[wQg6->e3] Ca7*e3[bCe3->c3]{=}
1...Ce7*a3[bCa3->a6] 2.Qf7*g6[wQg6->e2] Ca6*e2[bCe2->c3]{=}
1...Ce7*a3[bCa3->a5] 2.Qf7*g6[wQg6->e1] Ca5*e1[bCe1->c3]{=}
1...Ce7*a3[bCa3->a4] 2.Qf7*g6[wQg6->e8] Ca4*e8[bCe8->c3]{=}
1...Ce7*a3 2.Qf7*g6[wQg6->e7] Ca3*e7[bCe7->c3]{=}
1...Ce7*a3[bCa3->a2] 2.Qf7*g6[wQg6->e6] Ca2*e6[bCe6->c3]{=}
1...Ce7*a3[bCa3->a1] 2.Qf7*g6[wQg6->e5] Ca1*e5[bCe5->c3]{=
(C+ by WinChloe v3.43)}
(Author) |
Surprisingly this 4,4 leaper seems to be the only piece that has a unique square to move to from any square on the 8×8 board! Good find. The generalised extension is for mathematicians only !
on one hand too much mechanical
on the other hand nice, light, and rather easy to understand
The tries give the minimum of “chess perfume” that is needed : the queen must stick to the black pieces in order not to be intercepted
This comes to underline that the (4,4)leaper has a special quality : anywhere on the board it can play to one square and to one square only.