No.1630
Shankar Ram
(India)
Original Fairy problems
JF-2022-I:
01.01.2022 - 30.06.2022
+/- Russian translation
pieces | 'Wazir', 'Zebra(Z)', 'Right Zebra', 'Equileaper' | фигуры |
Equileaper: | Combination of all possible (m,n) leapers where m and n are both even. This piece can leap to any square that is a multiple of 2 squares distant both vertically and horizontally. | |
Right Zebra: | Zebra that can only move/capture to the squares on its right side. | |
Wazir: | (0+1 Leaper, e.g., a1 to a2; a1 to b1) | [ENG] (0+1 Leaper, e.g., a1 to a2; a1 to b1) |
Zebra(Z): | (2,3) Leaper | Зебра. Прыгун (2,3). |
conditions | 'Diagram Circe', 'Black must capture' | условия |
Black must capture: | (Schlagzwang) - Black captures if able, otherwise makes another move. | |
Diagram Circe: | A captured unit is reborn on the square occupied by it in the diagram position. |
No. 1630 Shankar Ram
India
original - 11.07.2021
white Kc8 Bc6 EQb7 Pc2c4e6g2g4g5
black Ka8 Ba7 Sa3f8 Web2b4d2d4e7f2f4g7h2h4 Zc3g3 MAe3
#3 9+17
Diagram Circe, Black must capture
Equileaper b7
Wazir b2,b4,d2,d4,e7,f2,f4,g7,h2,h4
Zebra c3,g3
Right Zebra e3
Diagram Circe, Black must capture
Equileaper b7
Wazir b2,b4,d2,d4,e7,f2,f4,g7,h2,h4
Zebra c3,g3
Right Zebra e3
Solution: (click to show/hide)
1.EQb7-b1+?{(A)} WEb2*b1[+wEQb7]{display-departure-square}! 1...Sa3*b1[+wEQb7]{display-departure-square}!
1.EQb7-b3+?{(B)} WEb2*b3[+wEQb7]{display-departure-square}! 1...WEb4*b3[+wEQb7]{display-departure-square}!
1.EQb7-b5+?{(C)} WEb4*b5[+wEQb7]{display-departure-square}! 1...Sa3*b5[+wEQb7]{display-departure-square}!
1.EQb7-d1+?{(D)} Zg3*d1[+wEQb7]{display-departure-square}! 1...WEd2*d1[+wEQb7]{display-departure-square}!
1.EQb7-d3+?{(E)} WEd2*d3[+wEQb7]{display-departure-square}! 1...WEd4*d3[+wEQb7]{display-departure-square}!
1.EQb7-d5+?{(F)} Zg3*d5[+wEQb7]{display-departure-square}! 1...WEd4*d5[+wEQb7]{display-departure-square}!
1.EQb7-f1+?{(G)} WEf2*f1[+wEQb7]{display-departure-square}! 1...Zc3*f1[+wEQb7]{display-departure-square}!
1.EQb7-f3+?{(H)} WEf2*f3[+wEQb7]{display-departure-square}! 1...WEf4*f3[+wEQb7]{display-departure-square}!
1.EQb7-f5+?{(I)} WEf4*f5[+wEQb7]{display-departure-square}! 1...Zc3*f5[+wEQb7]{display-departure-square}!
1.EQb7-h1+?{(J)} WEh2*h1[+wEQb7]{display-departure-square}! 1...MAe3*h1[+wEQb7]{display-departure-square}!
1.EQb7-h3+?{(K)} WEh2*h3[+wEQb7]{display-departure-square}! 1...WEh4*h3[+wEQb7]{display-departure-square}!
1.EQb7-h5+?{(L)} WEh4*h5[+wEQb7]{display-departure-square}! 1...MAe3*h5[+wEQb7]{display-departure-square}!
1.EQb7-d7+?{(M)} Sf8*d7[+wEQb7]{display-departure-square}! 1...WEe7*d7[+wEQb7]{display-departure-square}!
1.EQb7-f7+?{(N)} WEg7*f7[+wEQb7]{display-departure-square}! 1...WEe7*f7[+wEQb7]{display-departure-square}!
1.EQb7-h7+?{(O)} WEg7*h7[+wEQb7]{display-departure-square}! 1...Sf8*h7[+wEQb7]{display-departure-square}!
1.c4-c5?{display-departure-square} Ba7*c5[+wPc4]{display-departure-square}!
1.g5-g6!{display-departure-square}{(ZZ)
}
1...WEb4*c4{display-departure-square} 2.EQb7-b1+{(A)} WEb2*b1[+wEQb7]{display-departure-square} 3.EQb7-b3#{(B)}
2...Sa3*b1[+wEQb7]{display-departure-square} 3.EQb7-b5#{(C)}
1...Sa3*c2{(c4)}{display-departure-square} 2.EQb7-b3+{(B)} WEb4*b3[+wEQb7]{display-departure-square} 3.EQb7-b5#{(C)}
2...WEb2*b3[+wEQb7]{display-departure-square} 3.EQb7-b1#{(A)}
1...WEb2*c2{display-departure-square} 2.EQb7-b5+{(C)} Sa3*b5[+wEQb7]{display-departure-square} 3.EQb7-b1#{(A)}
2...WEb4*b5[+wEQb7]{display-departure-square} 3.EQb7-b3#{(B)
}
1...WEd4*c4{display-departure-square} 2.EQb7-d1+{(D)} WEd2*d1[+wEQb7]{display-departure-square} 3.EQb7-d3#{(E)}
2...Zg3*d1[+wEQb7]{display-departure-square} 3.EQb7-d5#{(F)}
1...Zg3*e6{display-departure-square} 2.EQb7-d3+{(E)} WEd4*d3[+wEQb7]{display-departure-square} 3.EQb7-d5#{(F)}
2...WEd2*d3[+wEQb7]{display-departure-square} 3.EQb7-d1#{(D)}
1...WEd2*c2{display-departure-square} 2.EQb7-d5+{(F)} Zg3*d5[+wEQb7]{display-departure-square} 3.EQb7-d1#{(D)}
2...WEd4*d5[+wEQb7]{display-departure-square} 3.EQb7-d3#{(E)
}
1...WEf4*g4{display-departure-square} 2.EQb7-f1+{(G)} WEf2*f1[+wEQb7]{display-departure-square} 3.EQb7-f3#{(H)}
2...Zc3*f1[+wEQb7]{display-departure-square} 3.EQb7-f5#{(I)}
1...Zc3*e6{display-departure-square} 2.EQb7-f3+{(H)} WEf4*f3[+wEQb7]{display-departure-square} 3.EQb7-f5#{(I)}
2...WEf2*f3[+wEQb7]{display-departure-square} 3.EQb7-f1#{(G)}
1...WEf2*g2{display-departure-square} 2.EQb7-f5+{(I)} Zc3*f5[+wEQb7]{display-departure-square} 3.EQb7-f1#{(G)}
2...WEf4*f5[+wEQb7]{display-departure-square} 3.EQb7-f3#{(H)
}
1...WEh4*g4{display-departure-square} 2.EQb7-h1+{(J)} WEh2*h1[+wEQb7]{display-departure-square} 3.EQb7-h3#{(K)}
2...MAe3*h1[+wEQb7]{display-departure-square} 3.EQb7-h5#{(L)}
1...MAe3*g6[+wPg5]{display-departure-square} 2.EQb7-h3+{(K)} WEh4*h3[+wEQb7]{display-departure-square} 3.EQb7-h5#{(L)}
2...WEh2*h3[+wEQb7]{display-departure-square} 3.EQb7-h1#{(J)}
1...WEh2*g2{display-departure-square} 2.EQb7-h5+{(L)} MAe3*h5[+wEQb7]{display-departure-square} 3.EQb7-h1#{(J)}
2...WEh4*h5[+wEQb7]{display-departure-square} 3.EQb7-h3#{(K)
}
1...WEg7*g6[+wPg5]{display-departure-square} 2.EQb7-d7+{(M)} WEe7*d7[+wEQb7]{display-departure-square} 3.EQb7-f7#{(N)}
2...Sf8*d7[+wEQb7]{display-departure-square} 3.EQb7-h7#{(O)}
1...Sf8*e6{(g6)}{display-departure-square} 2.EQb7-f7+{(N)} WEg7*f7[+wEQb7]{display-departure-square} 3.EQb7-h7#{(O)}
2...WEe7*f7[+wEQb7]{display-departure-square} 3.EQb7-d7#{(M)}
1...WEe7*e6{display-departure-square} 2.EQb7-h7+{(O)} Sf8*h7[+wEQb7]{display-departure-square} 3.EQb7-d7#{(M)}
2...WEg7*h7[+wEQb7]{display-departure-square} 3.EQb7-f7#{(N)
}
(C+ by WinChloe v3.52 using the "Bondisseur Simple" user definitions for the Right Zebra's moves (Author))
- 5-fold 3x2 Jacobs theme (quintupled)
- 15 thematic tries and variations
- 5-fold cycles of 3 W moves:
- A-B/C, B-C/A, C-A/B
- D-E/F, E-F/D, F-D/E
- G-H/I, H-I/G, I-G/H
- J-K/L, K-L/J, L-J/K
- M-N/O, N-O/M, O-M/N
The definition given is that of an equihopper, not an equileaper.
Equileaper
Combination of all possible (m,n) leapers where m and n are both even. This piece can leap to any square that is a multiple of 2 squares distant both vertically and horizontally.
You are right Joost unfortunately the same definition is given in Strategem also 🤔
Quick question: can an equileaper make a nullmove? The definition doesn’t prohibit it.
No. It wasn’t my intention and It hasn’t been programmed like that in WinChloe too. The definition “all combinations of x and y where x and y are both even” seems to suggest it can make a null move. “x,y >0” should perhaps be added! My original definition was it moves/captures like a non-stop Equihopper with or without a hurdle.
Probably x+y>0 (x=0 and y>0 or vice versa is allowed).
Joost has given the right definition of Equileaper. Another way to describe it is Equileaper can visit/attack every square an Equi-hopper can. No hurdles needed !
@Julia: Can you fix the Equileaper definition?
Thank you, Joost! Corrected.